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Abstract: Mining frequent patterns in transaction databases, time- series databases, and 

many other kinds of databases has been studied popularly in data mining research. Most 

of the previous studies adopt an Apriori-like candidate set generation-and-test approach. 

However, candidate set generation is still costly, especially when there exist prolific 

patterns and/or long patterns. We have compared two of the most common data mining 

algorithms: Apriori and FPGrowth 
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1. OVERVIEW 
 

The progress in the data collecting technology as 

barcode readers, industrial sensors, a.s.o. are all 

generating a huge amount of data. This explosive 

growth in the database dimensions has ‚generated’ 

the need to develop new techniques and new 

instruments that should permit automatic intelligent 

transformation of this data into useful information 

and knowledge. Data mining is offering a series of 

such techniques. 

 

Data mining, also known as Knowledge Discovery in 

Database (KDD) is the process of discovering new 

and hidden knowledge and potentially useful 

relations (association rules, trends, etc.) from very 

large databases. 

 

 

2. DATA MINING TASKS 

 

In practice, at the highest level, the main goals of the 

data mining systems may be classified into two 

categories: 

• Prediction – infers the values of the current data 

from the databases with the goal to predict 

unknown or future values 
• Description – realizes a data characterization 

that is easily interpretable by humans 

 

These objectives are carried out by the following 

basic data mining tasks: 

• classification – the task of determining a 

function that classifies the data in one or more 

predefined classes 
• regression – the task of determining a function 

that permits the evaluation of real data 

• clustering – the task that groups data with 

similar characteristics into classes or clusters. 

The grouping is based on similarity metrics. 
• Rule generation – the task of determining or 

generating rules from data. The association rules 

are relations between the attributes of a 

transactional database. 

• Summarizing or condensation – the task that 

determines a compact description for a set of 

data.  
• Sequence analysis – this task determines 

sequential patterns from data. 

 

 

3. BOOLEAN ASSOCIATION RULES 

 

An important task in data mining is the process of 

discovering association rules. An association rules 

describes interesting relations between different 

attributes and/or objects. A classic example of using 

association rules is the market basket analysis, used 

to determine potential relations between the products 

purchased by the customers. These discovered 



associations may help producers to elaborate 

marketing strategies keeping into account the 

products that are bought more frequent together. An 

example of such an association rule is the following: 

86 % of the customers that purchased bread also 

purchased butter. 

 

 

3.1 Formal definition 

 

Let { }miiI ,...,1=   be a set of literals, called items. 

Let D be a set of transactions, where each transaction 

T is a set of items such that IT ∈  . Associated with 

each transaction is a unique identifier, called its TID. 

We say that a transaction T contains X, a set of some 

items in I, if   TX ⊆  

 

Definition 1. 

A subset { } IiiX k ⊆,...,1  is called an itemset. An 

itemset that contains k articles is called a k-itemset. 

 

 

3.2 Apriori Algorithm 

 

The first algorithm used to determine the frequent 

item sets and to generate the Boolean association 

rules was the AIS algorithm introduced by A. 

Agrawal. The Apriori algorithm, introduced by the 

same author adds a major improvement to the history 

of determining the association rules. The Apriori 

algorithm tries to reduce the high number of database 

scans in order to determine the support, by 

significantly reducing the number of candidate item 

sets. The basis for this reduction is the following 

property (the Apriori property). 

 

Apriori property. If X is frequent in DB, then any 

item set XY ⊆ is frequent in DB. 

 

Corollary. 

If an itemset X contains a subitemset that is not 

frequent, then the X itemset is not frequent. 

 

Corrolary 2 

If a k-itemset contains a (k-1)-itemset unfrequent, 

then the k-itemset is also unfrequent. 

Apriori algorithm contains two important steps 

1. the union step: at this step, in order to determine 

the frequent k-itemsets, Lk, there is generated a set Ck 

of candidate k-itemsets, superset of Lk by making the 

union between Lk-1 and Lk-1. 

 

As a convention, we assume that the items contained 

in the itemsets are lexicographically oredered. 

 
{ } { }{ ,,,...,,,|,,..., 1211111111 −−−−−−−− =∈∈=×= kkkkkkkkk xxxXLYLXyxxLLC

 

{ } }11221121 ...1,,,..., −−−−−− <∧=∧∧== kkkkkk yxyxyxyyyY

 

 

2. Reduction step: At this step, from the previously 

generated set Ck are eliminated, based on the 

Corollary 2, the itemsets that contain (k-1) 

subitemsets that do not belong to Lk-1. This test can 

be quickly carried out by keeping a hashtree 

containing all frequent itemsets. 

 

Example 1 

Let’s consider the DB database from Table 1 with all 

transactions from a store. We notice that there are 9 

transactions in the database, 9=DB . The Figure 1 

presents the steps of applying the Apriori algorithm 

for determining the frequent itemsets of DB. 

 

The first iteration of the algorithm considers every 

itemset from I, a candidate 1-itemset 

{ }9211 ,...,, IIIC = . The algorithm scans the entire 

database and determines the count for each item.  

 

TID Items 

T100 I1, I2, I5 

T200 I2, I4 

T300 I2, I3 

T400 I1,I2,I4 

T500 I1, I3 

T600 I2, I3 

T700 I1, I3 

T800 I1, I2, I3, I5 

T900 I1, I2, I3 

Table 1 – Example of a database containing 

transactions from a store 
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Figure 1 – Using the Apriori algorithm 



Further it is presented the result of using the Apriori 

algorithm, implemented in Java, on the database 

containing the transactions from Table 1. 

 

Itemset Support 

I1 0.6666666666666666 

I2 0.7777777777777778 

I3 0.6666666666666666 

I4 0.2222222222222222 

I5 0.2222222222222222 

I1, I2 0.4444444444444444 

I1, I3 0.4444444444444444 

I1, I5 0.2222222222222222 

I2, I3 0.4444444444444444 

I2, I4 0.2222222222222222 

I2, I5 0.2222222222222222 

I1, I2, I3 0.2222222222222222 

I1, I2, I5 0.2222222222222222 

Table 2 - Apriori results for the items in DB 

The next table presents the results of the Apriori 

algorithm applied to the determined frequent 

itemsets, in order to discover the association rules. 
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I4 I2 0.2222222222222222 1.0 

I5 I2 0.2222222222222222 1.0 

I5 I1, I2 0.2222222222222222 1.0 

I5 I1 0.2222222222222222 1.0 

I2, I5 I1 0.2222222222222222 1.0 

I1, I5 I2 0.2222222222222222 1.0 

 

FPGrowth 

The Apriori heuristic achieves good performance 

gain by (possibly significantly) reducing the size of 

candidate sets. However, in situations with prolific 

frequent patterns, long patterns, or quite low 

minimum support thresholds, an Apriori-like 

algorithm may still suffer from the following two 

nontrivial costs: 

� It is costly to handle a huge number of 

candidate sets. For example, if there are 104 

frequent 1-itemsets, the Apriori algorithm 

will need to generate more than 107 length-

2 candidates and accumulate and test their 

occurrence frequencies. Moreover, to 

discover a frequent pattern of size 100, such 

as {a1, … a100}, it must generate more than 

2
100

 = 10
30

 candidates in total. This is the 

inherent cost of candidate generation, no 

matter what implementation technique is 

applied. 

� It is tedious to repeatedly scan the database 

and check a large set of candidates by 

pattern matching, which is especially true 

for mining long patterns. 

 

Definition (FP-tree) A frequent pattern tree (or FP-

tree in short) is a tree structure defined below. 

1. It consists of one root labeled as "null", a set of 

item prefix subtrees as the children of the root, 

and a frequent-item header table. 

2. Each node in the item prefix subtree consists of 

three fields: item-name, count, and node link, 

where item-name registers which item this node 

represents, count registers the number of 

transactions represented by the portion of the 

path reaching this node, and node-link links to 

the next node in the FP-tree carrying the same 

item-name, or null if there is none. 

3. Each entry in the frequent-item header table 

consists of two  fields, (1) item-name and (2) 

head of node-link, which points to the first node 

in the FP-tree carrying the item-name. 

 

Based on this definition, we have the following FP-

tree construction algorithm. 

 

Algorithm 1 (FP-tree construction) 

Input: A transaction database DB and a minimum 

support threshold mTh. 

Output: Its frequent pattern tree, FP-tree 

Method: The FP-tree is constructed in the following 

steps. 

1. Scan the transaction database DB once. Collect 

the set of frequent items F and their supports. 

Sort F in support descending order as L, the list 

of frequent items. 

2. Create the root of an FP-tree, T, and label it as 

"null". For each transaction Trans in DB do the 

following.  

 

Select and sort the frequent items in Trans according 

to the order of L. Let the sorted frequent item list in 

Trans be [pjP], where p is the first element and P is 

the remaining list. Call insert_tree([pjP]; T). 

 

The function insert_tree([pjP]; T) is performed as 

follows. If T has a child N such that N.item-name = 

p.item-name, then increment N's count by 1; else 

create a new node N, and let its count be 1, its parent 

link be linked to T, and its node-link be linked to the 

nodes with the same item-name via the node-link 

structure. If P is nonempty, call insert tree(P;N) 

recursively. 

 

We have the following algorithm for mining frequent 

patterns using FP-tree. 

 

Procedure FP-Growth(Tree,α ) 

1: if Tree contains a single path P then 

2:  then for each combination (denoted as β ) of the 

nodes in the path P do 

3:  generate pattern βα ∪  with support = minimum 

support of nodes in b 

4:   end for 

5: else 



6:    else for each ai in the header of Tree do 

7: generate pattern αβ ∪= ia  with support = 

ai.support 

8: construct β ’s conditional pattern base and then 

β 's conditional FP-tree Tree βTree  

9:   if ∅≠βTree  then 

10:  call FP − Growth( βTree , β ) 

11:     end if 

12:   end for 

13: end if 

 

 

Experimental results 
The experimental results were obtained by running 

both algorithms, on the same database. The database 

is synthetic, that is, it is generated by an external 

program.  

 

The system used for testing is detailed below: 

CPU: AMD Athlon XP 2200+ (1800 MHz) 

RAM: 256 Mbytes 

HDD: 7200 rpm, ATA 100, 8Mb Cache 

OS: Windows XP Professional SP2 

JVM: Java(TM) 2 Runtime Environment, Standard 

Edition (build 1.4.2_02-b03) 

 

The size of the databases used for testing: 

 

Items Transactions Size (kb) 

1000 44 

10000 412 

50 

100000 4150 

1000 50 

10000 424 

100 

100000 4185 

 

Minimum support: 0,5 
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10000 1594 3 11 1047 2 

50 
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100000 10344 2 4 10172 2 

 

Minimum support: 0,2 

 

 

 

 

 

Apriori  FP-Growth 
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50 

100000 588891 10 1044 10656 2 

1000 297 5 80 125 2 

10000 2704 5 79 1063 2 
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100000 2719 5 79 1078 2 

 

No. of transactions: 100.000 
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Association Rules: 
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Figure 2 - Execution time as a function of 

minimum support 
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Conclusion 
Experimental data analysis shows the following: 

Apriori: 

� Poor results regarding the execution time are 

due to the fact that the algorithm requires 

repeated passes over the database; these are 

actually disk accesses. 

� The number of passes over the database 

depends on the number of frequent items 

found until a certain point in execution. It 

can be easily seen that, if the number of 

database passes is smaller then the execution 

time is considerably reduced. The table 

below depicts the fact that, if one pass over 

the database is required, the Apriori 

algorithm performs better than the 

FPGrowth 

 

No. of transactions : 100.000 
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FP Growth 

� The execution time is considerably smaller 

due to the fact that it requires only 2 passes 

over the database. 

� The memory requirements of this algorithm 

are largr than in the case of Apriori, because 

the FP tree is built and kept in the main 

memory. In the case of the databases used in 

the example the amount of used memory 

could not be measured, reaching about 16 

mbytes, but in case of large databases the 

memory requirements could go over 512 

Mbytes. 
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