

COMPARATIVE STUDY OF DATA MINING ALGORITHMS

Gabriel Toma-Tumbar

University of CraiovaFaculty of Automation, Computers and Electronics

Computer and Communications Engineering Department

Abstract: Mining frequent patterns in transaction databases, time- series databases, and

many other kinds of databases has been studied popularly in data mining research. Most

of the previous studies adopt an Apriori-like candidate set generation-and-test approach.

However, candidate set generation is still costly, especially when there exist prolific

patterns and/or long patterns. We have compared two of the most common data mining

algorithms: Apriori and FPGrowth

Keywords: Data mining, association rules, Apriori, FPTree, Boolean association rules.

1. OVERVIEW

The progress in the data collecting technology as

barcode readers, industrial sensors, a.s.o. are all

generating a huge amount of data. This explosive

growth in the database dimensions has ‚generated’

the need to develop new techniques and new

instruments that should permit automatic intelligent

transformation of this data into useful information

and knowledge. Data mining is offering a series of

such techniques.

Data mining, also known as Knowledge Discovery in

Database (KDD) is the process of discovering new

and hidden knowledge and potentially useful

relations (association rules, trends, etc.) from very

large databases.

2. DATA MINING TASKS

In practice, at the highest level, the main goals of the

data mining systems may be classified into two

categories:

• Prediction – infers the values of the current data

from the databases with the goal to predict

unknown or future values
• Description – realizes a data characterization

that is easily interpretable by humans

These objectives are carried out by the following

basic data mining tasks:

• classification – the task of determining a

function that classifies the data in one or more

predefined classes
• regression – the task of determining a function

that permits the evaluation of real data

• clustering – the task that groups data with

similar characteristics into classes or clusters.

The grouping is based on similarity metrics.
• Rule generation – the task of determining or

generating rules from data. The association rules

are relations between the attributes of a

transactional database.

• Summarizing or condensation – the task that

determines a compact description for a set of

data.
• Sequence analysis – this task determines

sequential patterns from data.

3. BOOLEAN ASSOCIATION RULES

An important task in data mining is the process of

discovering association rules. An association rules

describes interesting relations between different

attributes and/or objects. A classic example of using

association rules is the market basket analysis, used

to determine potential relations between the products

purchased by the customers. These discovered

associations may help producers to elaborate

marketing strategies keeping into account the

products that are bought more frequent together. An

example of such an association rule is the following:

86 % of the customers that purchased bread also

purchased butter.

3.1 Formal definition

Let { }miiI ,...,1= be a set of literals, called items.

Let D be a set of transactions, where each transaction

T is a set of items such that IT ∈ . Associated with

each transaction is a unique identifier, called its TID.

We say that a transaction T contains X, a set of some

items in I, if TX ⊆

Definition 1.

A subset { } IiiX k ⊆,...,1 is called an itemset. An

itemset that contains k articles is called a k-itemset.

3.2 Apriori Algorithm

The first algorithm used to determine the frequent

item sets and to generate the Boolean association

rules was the AIS algorithm introduced by A.

Agrawal. The Apriori algorithm, introduced by the

same author adds a major improvement to the history

of determining the association rules. The Apriori

algorithm tries to reduce the high number of database

scans in order to determine the support, by

significantly reducing the number of candidate item

sets. The basis for this reduction is the following

property (the Apriori property).

Apriori property. If X is frequent in DB, then any

item set XY ⊆ is frequent in DB.

Corollary.

If an itemset X contains a subitemset that is not

frequent, then the X itemset is not frequent.

Corrolary 2

If a k-itemset contains a (k-1)-itemset unfrequent,

then the k-itemset is also unfrequent.

Apriori algorithm contains two important steps

1. the union step: at this step, in order to determine

the frequent k-itemsets, Lk, there is generated a set Ck

of candidate k-itemsets, superset of Lk by making the

union between Lk-1 and Lk-1.

As a convention, we assume that the items contained

in the itemsets are lexicographically oredered.

{ } { }{ ,,,...,,,|,,..., 1211111111 −−−−−−−− =∈∈=×= kkkkkkkkk xxxXLYLXyxxLLC

{ } }11221121 ...1,,,..., −−−−−− <∧=∧∧== kkkkkk yxyxyxyyyY

2. Reduction step: At this step, from the previously

generated set Ck are eliminated, based on the

Corollary 2, the itemsets that contain (k-1)

subitemsets that do not belong to Lk-1. This test can

be quickly carried out by keeping a hashtree

containing all frequent itemsets.

Example 1

Let’s consider the DB database from Table 1 with all

transactions from a store. We notice that there are 9

transactions in the database, 9=DB . The Figure 1

presents the steps of applying the Apriori algorithm

for determining the frequent itemsets of DB.

The first iteration of the algorithm considers every

itemset from I, a candidate 1-itemset

{ }9211 ,...,, IIIC = . The algorithm scans the entire

database and determines the count for each item.

TID Items

T100 I1, I2, I5

T200 I2, I4

T300 I2, I3

T400 I1,I2,I4

T500 I1, I3

T600 I2, I3

T700 I1, I3

T800 I1, I2, I3, I5

T900 I1, I2, I3

Table 1 – Example of a database containing

transactions from a store

Itemset Frequency
{I1}

{I }

{I }

{I }

{I }

2

3

4

5

6
7
6
2
2

Itemset Frequency
{I1}

{I }

{I }

{I }

{I }

2

3

4

5

6
7
6
2
2

Compare the frequency

With minimum support =2
Scan DB

(A) C1 (B) L1

Compare the frequency

With minimum support=2

Itemset Frequency
{I1,I }

{I ,I }

{I ,I }

{I ,I }

{I ,I }

{I ,I }

{I ,I }

{I ,I }

{I ,I }

{I ,I }

2

1 3

1 4

1 5

2 3

2 4

2 5

3 4

3 5

4 5

4
4
1
2
4
2
2
0
1
0

Itemset Frequency
{I1,I }

{I ,I }

{I ,I }

{I ,I }

{I ,I }

{I ,I }

2

1 3

1 5

2 3

2 4

2 5

4
4
2
4
2
2

Generate

C from L2 1

(C) C2 (D) L2

(E) C3 (F) L3

Itemset Frequency

{I1,I ,I }

{I ,I ,I }
2 3

1 3 5

2
2

Itemset Frequency

{I1,I ,I }

{I ,I ,I }
2 3

1 3 5

2
2

Generate

C from L3 2

Compare the frequency

With minumum support=2

Figure 1 – Using the Apriori algorithm

Further it is presented the result of using the Apriori

algorithm, implemented in Java, on the database

containing the transactions from Table 1.

Itemset Support

I1 0.6666666666666666

I2 0.7777777777777778

I3 0.6666666666666666

I4 0.2222222222222222

I5 0.2222222222222222

I1, I2 0.4444444444444444

I1, I3 0.4444444444444444

I1, I5 0.2222222222222222

I2, I3 0.4444444444444444

I2, I4 0.2222222222222222

I2, I5 0.2222222222222222

I1, I2, I3 0.2222222222222222

I1, I2, I5 0.2222222222222222

Table 2 - Apriori results for the items in DB

The next table presents the results of the Apriori

algorithm applied to the determined frequent

itemsets, in order to discover the association rules.

A
n

teced
en

t

C
o

n
seq

u
en

t

S
u

p
p

o
rt

C
o

n
fid

en
ce

I4 I2 0.2222222222222222 1.0

I5 I2 0.2222222222222222 1.0

I5 I1, I2 0.2222222222222222 1.0

I5 I1 0.2222222222222222 1.0

I2, I5 I1 0.2222222222222222 1.0

I1, I5 I2 0.2222222222222222 1.0

FPGrowth

The Apriori heuristic achieves good performance

gain by (possibly significantly) reducing the size of

candidate sets. However, in situations with prolific

frequent patterns, long patterns, or quite low

minimum support thresholds, an Apriori-like

algorithm may still suffer from the following two

nontrivial costs:

� It is costly to handle a huge number of

candidate sets. For example, if there are 104

frequent 1-itemsets, the Apriori algorithm

will need to generate more than 107 length-

2 candidates and accumulate and test their

occurrence frequencies. Moreover, to

discover a frequent pattern of size 100, such

as {a1, … a100}, it must generate more than

2
100

 = 10
30

 candidates in total. This is the

inherent cost of candidate generation, no

matter what implementation technique is

applied.

� It is tedious to repeatedly scan the database

and check a large set of candidates by

pattern matching, which is especially true

for mining long patterns.

Definition (FP-tree) A frequent pattern tree (or FP-

tree in short) is a tree structure defined below.

1. It consists of one root labeled as "null", a set of

item prefix subtrees as the children of the root,

and a frequent-item header table.

2. Each node in the item prefix subtree consists of

three fields: item-name, count, and node link,

where item-name registers which item this node

represents, count registers the number of

transactions represented by the portion of the

path reaching this node, and node-link links to

the next node in the FP-tree carrying the same

item-name, or null if there is none.

3. Each entry in the frequent-item header table

consists of two fields, (1) item-name and (2)

head of node-link, which points to the first node

in the FP-tree carrying the item-name.

Based on this definition, we have the following FP-

tree construction algorithm.

Algorithm 1 (FP-tree construction)

Input: A transaction database DB and a minimum

support threshold mTh.

Output: Its frequent pattern tree, FP-tree

Method: The FP-tree is constructed in the following

steps.

1. Scan the transaction database DB once. Collect

the set of frequent items F and their supports.

Sort F in support descending order as L, the list

of frequent items.

2. Create the root of an FP-tree, T, and label it as

"null". For each transaction Trans in DB do the

following.

Select and sort the frequent items in Trans according

to the order of L. Let the sorted frequent item list in

Trans be [pjP], where p is the first element and P is

the remaining list. Call insert_tree([pjP]; T).

The function insert_tree([pjP]; T) is performed as

follows. If T has a child N such that N.item-name =

p.item-name, then increment N's count by 1; else

create a new node N, and let its count be 1, its parent

link be linked to T, and its node-link be linked to the

nodes with the same item-name via the node-link

structure. If P is nonempty, call insert tree(P;N)

recursively.

We have the following algorithm for mining frequent

patterns using FP-tree.

Procedure FP-Growth(Tree,α)

1: if Tree contains a single path P then

2: then for each combination (denoted as β) of the

nodes in the path P do

3: generate pattern βα ∪ with support = minimum

support of nodes in b

4: end for

5: else

6: else for each ai in the header of Tree do

7: generate pattern αβ ∪= ia with support =

ai.support

8: construct β ’s conditional pattern base and then

β 's conditional FP-tree Tree βTree

9: if ∅≠βTree then

10: call FP − Growth(βTree , β)

11: end if

12: end for

13: end if

Experimental results
The experimental results were obtained by running

both algorithms, on the same database. The database

is synthetic, that is, it is generated by an external

program.

The system used for testing is detailed below:

CPU: AMD Athlon XP 2200+ (1800 MHz)

RAM: 256 Mbytes

HDD: 7200 rpm, ATA 100, 8Mb Cache

OS: Windows XP Professional SP2

JVM: Java(TM) 2 Runtime Environment, Standard

Edition (build 1.4.2_02-b03)

The size of the databases used for testing:

Items Transactions Size (kb)

1000 44

10000 412

50

100000 4150

1000 50

10000 424

100

100000 4185

Minimum support: 0,5

Apriori

FP-

Growth

Item
s

T
ran

sactrio
n

s

T
im

e (m
s)

P
asse

s

F
req

u
en

t

item
s

T
im

e (m
s)

P
asse

s

1000 203 2 8 172 2

10000 1594 3 11 1047 2

50

100000 15708 3 12 10172 2

1000 250 2 2 125 2

10000 1109 2 2 1047 2

100

100000 10344 2 4 10172 2

Minimum support: 0,2

Apriori FP-Growth

Item
s

T
ran

sactio
n

s

T
im

e (m
s)

P
asse

s

F
req

u
en

t

item
s

T
im

e

(m
s)

P
asse

s

1000 391 5 143 203 2

10000 2875 5 188 1203 2

50

100000 588891 10 1044 10656 2

1000 297 5 80 125 2

10000 2704 5 79 1063 2

100

100000 2719 5 79 1078 2

No. of transactions: 100.000

Apriori FP Growth

M
in

 su
p

p
o

rt

R
u

n

tim
e (m

s)

P
a

sses

R
u

n
tim

e

(m
s)

P
a

sses

F
req

u
en

t

item
sets

0,1 62630 10 11422 2 1320

0,3 27016 5 10266 2 117

0,5 15708 3 10172 2 12

0,7 5390 1 9921 2 1

0,9 5281 1 4828 1 0

Association Rules:

Item
s

T
ran

sactio
n

s

C
o

n
fid

en
ce

T
im

e

(m
s)

A
sso

ciatio
n

ru
les

F
req

u
en

t

item
sets

50 1000 0,5 15 2 8

 10000 0,5 15 8 11

 100000 0,5 15 12 12

100 1000 0,5 16 0 2

 10000 0,5 16 0 2

 100000 0,5 16 0 4

50 1000 0,9 62 40 143

 10000 0,9 62 34 188

 100000 0,9 516 16237 1044

100 1000 0,9 15 38 80

 10000 0,9 15 48 79

 100000 0,9 0 48 79

Apriori/FPGrowth

0

10000

20000

30000

40000

50000

60000

70000

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Min support

T
im

e
 (

m
s
)

Apriori

FPGrowth

Figure 2 - Execution time as a function of

minimum support

0

2000

4000

6000

8000

10000

12000

14000

16000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Transactions

T
im

e
 (

m
s

)

Apriori (100 items) Apriori (50 items) FPGrowth (50 items) FPGrowth (100 items)

Figure 3 - Execution time vs. No. of transactions

Conclusion
Experimental data analysis shows the following:

Apriori:

� Poor results regarding the execution time are

due to the fact that the algorithm requires

repeated passes over the database; these are

actually disk accesses.

� The number of passes over the database

depends on the number of frequent items

found until a certain point in execution. It

can be easily seen that, if the number of

database passes is smaller then the execution

time is considerably reduced. The table

below depicts the fact that, if one pass over

the database is required, the Apriori

algorithm performs better than the

FPGrowth

No. of transactions : 100.000

Apriori FP Growth

M
in

im
u

m

su
p

p
o

rt

R
u

n
 tim

e

(m
s)

P
a

sses

R
u

n
 tim

e

(m
s)

P
a

sses

Frequent

itemsets

0,1 62630 10 11422 2 1320

0,3 27016 5 10266 2 117

0,5 15708 3 10172 2 12

0,7 5390 1 9921 2 1

0,9 5281 1 4828 1 0

FP Growth

� The execution time is considerably smaller

due to the fact that it requires only 2 passes

over the database.

� The memory requirements of this algorithm

are largr than in the case of Apriori, because

the FP tree is built and kept in the main

memory. In the case of the databases used in

the example the amount of used memory

could not be measured, reaching about 16

mbytes, but in case of large databases the

memory requirements could go over 512

Mbytes.

References

1. Imiclinski T. Swami A. Agrawal, R. Mining

association rules between sets of items in large

databases. In Proceedings of the 1993 ACM

SIGMOD Conference Washington DC, USA, 1993.

2. Man Hon Wong Chan Man Kuok, Ada Fu.

Mining fuzzy association rules in databases.

SIGMOD Rec., 27(1):41-46, 1998.

3. Ng V.T. Fu A.W. Yongjian Fu Cheung

D.W., Jiawei Han. A fast distributed algorithm for

mining association rules. In In 4th International

Conference on Parallel and Distributed Information

Systems (PDIS '96), pages 31-43. IEEE Computer

Society Technical Committee on Data Engineering,

and ACM SIGMOD, 1996.

4. Hand Heikki, Mannila Padhraic, Smyth

David. Principles of Data Mining. A Bradford Book

The MIT Press Cambridge, 2001. Fondi di Ricerca

Salvatore Ruggieri - Numero 558 d'inventario.

5. Attlila Gyenesei. Mining weighted

association rules for fuzzy quantitative items. In

Principles of Data Mining and Knowledge

Discovery, pages 416-423, 2000.

6. Chi S.C. Wang S.L. Hong T.P., Kuo C.S.

Mining fuzzy rules from quantitative data based on

the apriotitid algorithm. In Proceedings of the 2000

ACM symposium on Applied computing, pages 534-

536, 2000.

7. Philip S. Yu Jong Soo Park, Ming-Syan

Chen. An effective hash-based algorithm for mining

association rules. In Proceedings of the 1995 ACM

SIGMOD International Conference on Management

of Data, pages 175-186, San Jose, Canada, 1995.

8. J. C. Shafer R. Agrawal. Parallel mining of

association rules. Ieee Trans. On Knowledge And

Data Engineering, 8:962-969, 1996.

9. Ramakrishnan Srikant Rakesh Agrawal. Fast

algorithms for mining association rules. In Jorge B.

Bocca, Matthias Jarke, and Carlo Zaniolo, editors,

Proc. 20th Int. Conf. Very Large Data Bases, VLDB,

pages 487-499. Morgan Kaufmann, 12-15 1994.

10. Ramakrishnan Srikant Rakesh Agrawal.

Mining quantitative association rules in large

relational tables. In H. V. Jagadish and Inderpal

Singh Mumick, editors, Proceedings of the 1996

ACM SIGMOD International Conference on

Management of Data, pages 1-12, Montreal, Quebec,

Canada, 4-6 1996.

11. J. D. Ullman S. Tsur S. Brin, R. Motwani.

Dynamic itemset counting and implication rules for

market basket data. In Proceedings ACM SIGMOD

International Conference on Management of Data,

pages 255-264, 1997.

12. Navathe S. Savasere A., Omiecinski E. An

efficient algorithm for mining association rules in

large databases. In Proc. of Intl. Conf. on Very Large

Databases (VLDB), Zurich, Sept. 1995.

